Premutation CGG-repeat expansion of the Fmr1 gene impairs mouse neocortical development.
نویسندگان
چکیده
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late adult-onset neurodegenerative disorder caused by a premutation CGG-trinucleotide repeat expansion (55-200 CGG repeats) within the 5'-untranslated region of the FMR1 gene. Although FXTAS generally affects premutation carriers over 50 years of age, cognitive and psychological symptoms can appear in carriers during childhood, suggesting that the FMR1 premutation affects brain function early in life. Recent work with cultured hippocampal neurons from a premutation (Fmr1 CGG knock-in) mouse model revealed impaired development of early postnatal neurons, consistent with the developmental clinical involvement of premutation carriers. In the current work, we show that the presence of premutation CGG-repeat expansions in the mouse Fmr1 gene alters embryonic neocortical development. Specifically, embryonic premutation mice display migration defects in the neocortex and altered expression of neuronal lineage markers. The current data demonstrate that premutation alleles of the Fmr1 gene are associated with defects in developmental programs operating during prenatal stages of brain formation and provide further evidence that the FMR1 premutation has a neurodevelopmental component.
منابع مشابه
Maternal FMR1 premutation allele expansion and contraction in fraternal twins.
Fragile X syndrome results from an expansion of the CGG trinucleotide repeat in the 5' untranslated region of the Fragile X Mental Retardation 1 (FMR1) gene. Expansion of a maternal premutation allele is the mechanism by which a full mutation allele arises; contraction of a maternal premutation allele is rare. Here we report on both an expansion and contraction of a maternal FMR1 premutation al...
متن کاملImmune Dysregulation as a Cause of Autoinflammation in Fragile X Premutation Carriers: Link between FMRI CGG Repeat Number and Decreased Cytokine Responses
BACKGROUND Increased rates of autoinflammatory and autoimmune disorders have been observed in female premutation carriers of CGG repeat expansion alleles of between 55-200 repeats in the fragile X mental retardation 1 (FMR1) gene. To determine whether an abnormal immune profile was present at a cellular level that may predispose female carriers to autoinflammatory conditions, we investigated dy...
متن کاملAn antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals.
Expansion of the polymorphic CGG repeats within the 5'-UTR of the FMR1 gene is associated with variable transcriptional regulation of FMR1. Here we report a novel gene, ASFMR1, overlapping the CGG repeat region of FMR1 and transcribed in the antisense orientation. The ASFMR1 transcript is spliced, polyadenylated and exported to the cytoplasm. Similar to FMR1, ASFMR1 is upregulated in individual...
متن کاملCerebral Protein Synthesis in a Knockin Mouse Model of the Fragile X Premutation
The (CGG)n-repeat in the 5'-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in frag...
متن کاملRedistribution of transcription start sites within the FMR1 promoter region with expansion of the downstream CGG-repeat element.
Fragile X syndrome, the most common form of mental impairment, is caused by expansion of a (CGG)n trinucleotide repeat element located in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. Repeat expansion is known to influence both transcription and translation; however, the mechanisms by which the CGG element exerts its effects are not known. In the current work, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2011